Hieff Clone® Plus Multi One Step Cloning Kit 多片段一步法快速克隆试剂盒
产品货号
产品规格
是否有现货
价格
下单数量
操作
10912ES10
10T
现货
¥ 408.00
加入购物车
产品详情
FAQ
产品文档
已发表文献
相关应用
相关产品
产品详情
产品介绍

Hieff Clone® Plus Multi One Step Cloning Kit是一款简便、快速、高效的DNA定向克隆产品,该试剂盒可以将PCR产物定向克隆至任何载体的任何位点,可高效克隆50 bp-10 kb片段。将载体线性化,并在插入片段正、反向PCR引物5’端引入15-25 bp的线性化载体末端同源序列,使得插入片段PCR产物5’和3’末端分别带有与线性化载体两末端对应的完全一致的序列。PCR产物和线性化载体在重组酶的作用下,仅需50℃反应20 min即可进行转化,完成定向克隆。克隆阳性率可达95%以上。

试剂盒中2×Hieff Clone® MultiS Enzyme Premix预混了重组酶和重组反应所需缓冲液,并添加了独特的重组增强因子,可显著提高重组克隆效率。使用该试剂盒,可以一次实现多至5个片段的顺序拼接克隆。

产品性质
产品特色
  • 多至5个片段的克隆
存储条件

冰袋运输。-25~-15℃保存,有效期1年。

FAQ

Q:一步法克隆试剂盒中同源重组酶作用机制?

A:同源重组酶兼具外切酶活性、DNA 聚合酶活性及连接酶活性。 a)外切酶活性:该酶能特异性地识别载体和插入片段末端的 15-20bp 的同源序列, 并沿着 5'→3'方向切割dsDNA,从而产生粘性末端,粘性末端的碱基在 50℃作用下进行互补配对,将具备同源序列的载体与插入片段“融合”。 b)DNA 聚合酶活性:外切酶作用后,并不能保证将片段和载体的 5’末端都降解成一样长的粘性末端,同源末端退火配对后,还存在单链的碱基缺口。故需要借助DNA 聚合酶活性进行修复。 c)连接酶活性:催化形成磷酸二酯键,将所有缺口缝合。

Q:与传统克隆相比,Hieff Clone 克隆有什么优势?

A:优势:a)无需考虑酶切位点:不受插入片段酶切位点限制,适用于任何载体;插入片段兼容粘性或平末端。 b)设计简单:在插入片段的 PCR 扩增引物 5’端引入 20 bp 左右与载体末端同源的序列即可。 c)快速:50℃,20 min 即可完成重组。 d)应用广泛:可用于单片段或多片段定向克隆,也可结合Canace 高保真酶,应用于定点突变。

Q:哪里体现省时间了?为什么不用考虑酶切位点?

A:a)少了对目的片段酶切和回收步骤,且连接反应无需过夜,只需 20 min,相当于省去一天时间。 b)不用考虑酶切位点是指载体可以选择任意酶切位点进行线性化,无需考虑目的片段上是否含有相同的酶切位点。

Q:引物设计原则?设计引物可否不引入酶切位点?退火温度如何选择(Tm 值如何算)?

A:a)设计原则:同源臂(15-25 bp,GC 含量 40-60%)+酶切位点(根据实验需求保留或删除)+基因特异性引物(常规插入片段扩增引物)。 b)可以不引入。 c)计算扩增引物退火温度时,只需计算基因特异性扩增序列的 Tm 值,引入的同源序列及酶切位点不应参与计算。

Q:最佳克隆位点选择?

A:应避免选择克隆位点上下游 50 bp 内有重复序列的区域。并且克隆位点上下游 20 bp 区域内 GC 含量尽量在 40%-60%范围内。

Q:假阳性—不含插入片段(空载)?

A:原因 1:载体线性化不完全 判断方法:将已制备的线性化的载体转化涂板,如果长克隆较多,则表示线性化不完全。解决方案:若线性化不完全则需优化酶切体系,例如提高限制性内切酶使用量、延长酶切反应时间、胶回收纯化酶切产物等,具体优化操作可参考限制性内切酶供应商的使用说明(通常推荐双酶切)。 原因 2:反应体系中混入了相同抗性的环状质粒 产生原因:①以反向 PCR 方式进行载体线性化,残留环状质粒模板导致。 ②目的基因PCR 模板为与载体相同抗性的环状质粒,残留环状质粒模板导致。

判断方法:将已制备的线性化载体和目的片段分别转化涂板,如果长克隆较多,则表示有相同抗性的环状质粒混入。

解决方案:PCR 扩增产物先用DpnI 消化模板后,再进行胶回收纯化处理或直接进行胶回收纯化处理,去除残留的环状模板质粒导致的假阳性。

产品文档
COA
已发表文献

[1] Zhang H, Shao S, Zeng Y, et al. Reversible phase separation of HSF1 is required for an acute transcriptional response during heat shock. Nat Cell Biol. 2022;24(3):340-352. doi:10.1038/s41556-022-00846-7(IF:28.824)

[2] Qiao HH, Wang F, Xu RG, et al. An efficient and multiple target transgenic RNAi technique with low toxicity in Drosophila. Nat Commun. 2018;9(1):4160. Published 2018 Oct 8. doi:10.1038/s41467-018-06537-y(IF:12.353)

[3] Yao J, He Y, Su N, et al. Developing a highly efficient hydroxytyrosol whole-cell catalyst by de-bottlenecking rate-limiting steps. Nat Commun. 2020;11(1):1515. Published 2020 Mar 23. doi:10.1038/s41467-020-14918-5(IF:12.121)

[4] Chen W, Yao J, Meng J, et al. Promiscuous enzymatic activity-aided multiple-pathway network design for metabolic flux rearrangement in hydroxytyrosol biosynthesis. Nat Commun. 2019;10(1):960. Published 2019 Feb 27. doi:10.1038/s41467-019-08781-2(IF:11.878)

[5] Sun L, Yan Y, Lv H, et al. Rapamycin targets STAT3 and impacts c-Myc to suppress tumor growth. Cell Chem Biol. 2022;29(3):373-385.e6. doi:10.1016/j.chembiol.2021.10.006(IF:8.116)

[6] Liang C, Zhang X, Wu J, et al. Dynamic control of toxic natural product biosynthesis by an artificial regulatory circuit. Metab Eng. 2020;57:239-246. doi:10.1016/j.ymben.2019.12.002(IF:7.808)

[7] Wei W, Zhang P, Shang Y, Zhou Y, Ye BC. Metabolically engineering of Yarrowia lipolytica for the biosynthesis of naringenin from a mixture of glucose and xylose. Bioresour Technol. 2020;314:123726. doi:10.1016/j.biortech.2020.123726(IF:7.539)

[8] Ma F, Yang X, Shi Z, Miao X. Novel crosstalk between ethylene- and jasmonic acid-pathway responses to a piercing-sucking insect in rice. New Phytol. 2020;225(1):474-487. doi:10.1111/nph.16111(IF:7.299)

[9] Guo M, Wu F, Zhang Z, et al. Characterization of Rabbit Nucleotide-Binding Oligomerization Domain 1 (NOD1) and the Role of NOD1 Signaling Pathway during Bacterial Infection. Front Immunol. 2017;8:1278. Published 2017 Oct 10. doi:10.3389/fimmu.2017.01278(IF:6.429)

[10] Zou G, Ren J, Wu D, et al. Characterization and Heterologous Expression of UDP-Glucose 4-Epimerase From a Hericium erinaceus Mutant with High Polysaccharide Production. Front Bioeng Biotechnol. 2021;9:796278. Published 2021 Nov 25. doi:10.3389/fbioe.2021.796278(IF:5.890)

[11] Ren CY, Liu Y, Wei WP, Dai J, Ye BC. Reconstruction of Secondary Metabolic Pathway to Synthesize Novel Metabolite in Saccharopolyspora erythraea. Front Bioeng Biotechnol. 2021;9:628569. Published 2021 Jul 2. doi:10.3389/fbioe.2021.628569(IF:5.890)

[12] Li N, Hong T, Li R, et al. Cherry Valley Ducks Mitochondrial Antiviral-Signaling Protein-Mediated Signaling Pathway and Antiviral Activity Research. Front Immunol. 2016;7:377. Published 2016 Sep 21. doi:10.3389/fimmu.2016.00377(IF:5.695)

[13] Guo L, Yang W, Huang Q, et al. Selenocysteine-Specific Mass Spectrometry Reveals Tissue-Distinct Selenoproteomes and Candidate Selenoproteins. Cell Chem Biol. 2018;25(11):1380-1388.e4. doi:10.1016/j.chembiol.2018.08.006(IF:5.592)

[14] Liu Y, Ren CY, Wei WP, You D, Yin BC, Ye BC. A CRISPR-Cas9 Strategy for Activating the Saccharopolyspora erythraea Erythromycin Biosynthetic Gene Cluster with Knock-in Bidirectional Promoters. ACS Synth Biol. 2019;8(5):1134-1143. doi:10.1021/acssynbio.9b00024(IF:5.571)

[15] Liu Y, Wei WP, Ye BC. High GC Content Cas9-Mediated Genome-Editing and Biosynthetic Gene Cluster Activation in Saccharopolyspora erythraea. ACS Synth Biol. 2018;7(5):1338-1348. doi:10.1021/acssynbio.7b00448(IF:5.316)

[16] Pan P, Wang X, Chen Y, et al. Effect of Hcp Iron Ion Regulation on the Interaction Between Acinetobacter baumannii With Human Pulmonary Alveolar Epithelial Cells and Biofilm Formation. Front Cell Infect Microbiol. 2022;12:761604. Published 2022 Feb 23. doi:10.3389/fcimb.2022.761604(IF:5.293)

[17] Li S, Liang C, Liu G, Jin JM, Tao Y, Tang SY. De Novo Biosynthesis of Chlorogenic Acid Using an Artificial Microbial Community. J Agric Food Chem. 2021;69(9):2816-2825. doi:10.1021/acs.jafc.0c07588(IF:5.279)

[18] Chai S, Zhu Z, Tian E, et al. Building a Versatile Protein Production Platform Using Engineered Trichoderma reesei. ACS Synth Biol. 2022;11(1):486-496. doi:10.1021/acssynbio.1c00570(IF:5.110)

[19] Wang X, Wei J, Xiao Y, Luan S, Ning X, Bai L. Efflux identification and engineering for ansamitocin P-3 production in Actinosynnema pretiosum. Appl Microbiol Biotechnol. 2021;105(2):695-706. doi:10.1007/s00253-020-11044-6(IF:4.813)

[20] Xu X, Xiang T, Song S, et al. Secretory expression and purification of recombinant PLA2R epitopes for the detection of anti-PLA2R autoantibody in serum. Analyst. 2022;147(5):965-974. Published 2022 Feb 28. doi:10.1039/d2an00094f(IF:4.616)

[21] Gao Y, Chen N, Zhang X, et al. Juvenile Hormone Membrane Signaling Enhances its Intracellular Signaling Through Phosphorylation of Met and Hsp83. Front Physiol. 2022;13:872889. Published 2022 Apr 27. doi:10.3389/fphys.2022.872889(IF:4.566)

[22] Shang Y, Wei W, Zhang P, Ye BC. Engineering Yarrowia lipolytica for Enhanced Production of Arbutin. J Agric Food Chem. 2020;68(5):1364-1372. doi:10.1021/acs.jafc.9b07151(IF:4.192)

[23] Wang X, Wang R, Kang Q, Bai L. The Antitumor Agent Ansamitocin P-3 Binds to Cell Division Protein FtsZ in Actinosynnema pretiosum. Biomolecules. 2020;10(5):699. Published 2020 Apr 30. doi:10.3390/biom10050699(IF:4.082)

[24] Zhu P, Li Q, Azad SM, et al. Fungal Gene Mutation Analysis Elucidating Photoselective Enhancement of UV-C Disinfection Efficiency Toward Spoilage Agents on Fruit Surface. Front Microbiol. 2018;9:1141. Published 2018 Jun 12. doi:10.3389/fmicb.2018.01141(IF:4.019)

[25] Xu X, Yang J, Harvey-Samuel T, et al. Identification and characterization of the vasa gene in the diamondback moth, Plutella xylostella. Insect Biochem Mol Biol. 2020;122:103371. doi:10.1016/j.ibmb.2020.103371(IF:3.827)

[26] Zhang H, Song X, Li T, et al. DDX1 from Cherry valley duck mediates signaling pathways and anti-NDRV activity. Vet Res. 2021;52(1):9. Published 2021 Jan 20. doi:10.1186/s13567-020-00889-4(IF:3.699)

[27] Pan Q, Tong Y, Han YJ, Ye BC. Two amino acids missing of MtrA resulted in increased erythromycin level and altered phenotypes in Saccharopolyspora erythraea. Appl Microbiol Biotechnol. 2019;103(11):4539-4548. doi:10.1007/s00253-019-09825-9(IF:3.670)

[28] Yi J, Zhang D, Cheng Y, Tan J, Luo Y. The impact of Paenibacillus polymyxa HY96-2 luxS on biofilm formation and control of tomato bacterial wilt. Appl Microbiol Biotechnol. 2019;103(23-24):9643-9657. doi:10.1007/s00253-019-10162-0(IF:3.670)

[29] Shan Y, Guo D, Gu Q, et al. Genome mining and homologous comparison strategy for digging exporters contributing self-resistance in natamycin-producing Streptomyces strains. Appl Microbiol Biotechnol. 2020;104(2):817-831. doi:10.1007/s00253-019-10131-7(IF:3.670)

[30] Wang X, Ning X, Zhao Q, Kang Q, Bai L. Improved PKS Gene Expression With Strong Endogenous Promoter Resulted in Geldanamycin Yield Increase. Biotechnol J. 2017;12(11):10.1002/biot.201700321. doi:10.1002/biot.201700321(IF:3.649)

[31] Li CL, Xue DX, Wang YH, Xie ZP, Staehelin C. A method for functional testing constitutive and ligand-induced interactions of lysin motif receptor proteins. Plant Methods. 2020;16:3. Published 2020 Jan 16. doi:10.1186/s13007-020-0551-4(IF:3.610)

[32] Guo M, Li R, Xiao Q, et al. Protective Role of Rabbit Nucleotide-Binding Oligomerization Domain-2 (NOD2)-Mediated Signaling Pathway in Resistance to Enterohemorrhagic Escherichia coli Infection. Front Cell Infect Microbiol. 2018;8:220. Published 2018 Jun 26. doi:10.3389/fcimb.2018.00220(IF:3.520)

[33] Wei M, Zhu Z, Wu J, Wang Y, Geng J, Qin ZH. DRAM1 deficiency affects the organization and function of the Golgi apparatus. Cell Signal. 2019;63:109375. doi:10.1016/j.cellsig.2019.109375(IF:3.388)

[34] Hou X, Liu G, Zhang H, et al. High-mobility group box 1 protein (HMGB1) from Cherry Valley duck mediates signaling pathways and antiviral activity. Vet Res. 2020;51(1):12. Published 2020 Feb 18. doi:10.1186/s13567-020-00742-8(IF:3.357)

[35] Deng H, Xu X, Hu L, et al. A janus kinase from Scylla paramamosain activates JAK/STAT signaling pathway to restrain mud crab reovirus. Fish Shellfish Immunol. 2019;90:275-287. doi:10.1016/j.fsi.2019.03.056(IF:3.298)

[36] Wang M, Yan J, Zhu L, et al. The Establishment of Infectious Clone and Single Round Infectious Particles for Coxsackievirus A10. Virol Sin. 2020;35(4):426-435. doi:10.1007/s12250-020-00198-2(IF:3.242)

[37] Guo M, Zhang C, Zhang C, Zhang X, Wu Y. Functional characterization of NLRX1 in rabbit during enterohemorrhagic Escherichia coli infection. Dev Comp Immunol. 2020;106:103612. doi:10.1016/j.dci.2020.103612(IF:3.192)

[38] Mao D, Jia Y, Peng P, et al. Enhanced Efficiency of flySAM by Optimization of sgRNA Parameters in Drosophila. G3 (Bethesda). 2020;10(12):4483-4488. Published 2020 Dec 3. doi:10.1534/g3.120.401614(IF:2.781)

购物车
客服
电话
咨询