Alkaline Phosphatase Activity Detection Kit 碱性磷酸酶活性检测试剂盒
产品货号
产品规格
是否有现货
价格
下单数量
操作
21101ES60
100T
现货
¥ 856.00
加入购物车
产品详情
FAQ
产品文档
已发表文献
相关应用
相关产品
产品详情
产品介绍

碱性磷酸酶(Alkaline Phosphatase,简写为ALP或AKP),又称碱性磷酸酯酶,是一组同工酶,目前已发现六种ALP1-ALP6。广泛分布于人体肝脏、骨骼、肠、肾和胎盘等组织,是经肝脏向胆外排出的一种酶。碱性条件下可催化磷酸酯键的水解,从而将底物分子上的磷酸基团去除,转化为羟基。此类底物包括核酸(DNA、RNA)、蛋白、生物碱等。常见的有肠道碱性磷酸酶、非组织特异性碱性磷酸酶、胎盘碱性磷酸酶等;生物学中碱性磷酸酶(ALP)水平的变化及其活性的高低常被作为一种检测组织行为的指标,如:1)作为iPS成功诱导的标志;ALP在大多数细胞类型中均有表达,但是在iPS细胞内的表达水平明显升高;2)结肠癌细胞分化程度定性和定量的指标;3)血清中碱性磷酸酯酶的升高可导致高碱性磷酸酶血症,常被认为和恶性胆管阻塞,原发性硬化胆管炎,肝癌,肝硬化等肝胆疾病密切相关;4)血清中碱性磷酸酶活性升高还和骨骼损伤导致的骨生成,以及骨骼疾病如纤维骨炎、佝偻病、成骨不全等密切相关;5)碱性磷酸酶水平也会出现一些病理性降低的情况,多见于重症慢性肾炎、儿童甲状腺机能不全、贫血等。对于正常成人来说,血清内ALP的范围为40-150U/L。

对硝基苯磷酸(p-nitrophenyl phosphate, pNPP)是一种常用的磷酸酶显色底物,碱性条件下,可在ALP作用下生成对硝基苯酚(p-nitrophenol, pNP),后者在碱性环境下呈黄色产物,并在405nm处可检测到最大吸收峰。产物黄色越深,说明ALP活性越高,反之则活性越低。因此,通过检测OD405吸光值即可计算ALP活性水平。
产品组分

组分编号组分名称产品规格(100T)储存方法
21101-AALP反应缓冲液 ALP Assay Buffer15ml-20℃
21101-B显色底物 pNPP Substrate2管-20℃避光
21101-CpNP标准品溶液p-nitrophenol Standard100ul (10mM)-20℃避光
21101-D反应终止液 Stop Solution12ml-20℃


产品特色

本品为碱性磷酸酶活性检测试剂盒,可快速、便捷地检测细胞或组织裂解液/匀浆液、血清、血浆、尿液、纯化酶等样品中的ALP活性。该试剂盒包括标准品和空白对照,可进行达100个样品的检测。

存储条件

冰袋运输。-20℃保存,一年有效。其中显色底物、pNP标准溶液需要避光保存。

FAQ

Q:为什么该试剂盒检测不准?

A:可能是试剂盒各个成分没有恢复到室温即使用。

Q:在结果检测时 405nm 处测不到吸光值,怎么办?

A:如果不能测定 405nm,也可以在 400-415nm 范围内检测吸光度。如果不能立即测定,可以在数小时内完成测定,所显现的黄色在数小时(≤ 6h)内稳定。

Q:37℃孵育 5min,为什么检测不出来酶活?

A:建议延长孵育时间至 30min。

Q:该试剂盒中的产品可以直接在室温下操作的吗?

A:ALP 反应缓冲液和 p-nitrophenol 标准品溶液对人体有害,请注意适当防护。反应终止液有腐蚀性,请小心操作。最好在通风橱里操作。

产品文档
COA
已发表文献

[1] Zhang HT, Zeng Q, Wu B, et al. TRIM21-regulated Annexin A2 plasma membrane trafficking facilitates osteosarcoma cell differentiation through the TFEB-mediated autophagy. Cell Death Dis. 2021;12(1):21. Published 2021 Jan 6. doi:10.1038/s41419-020-03364-2(IF:8.469)


[2] Zhang X, Ren C, Hu F, et al. Detection of Bacterial Alkaline Phosphatase Activity by Enzymatic In Situ Self-Assembly of the AIEgen-Peptide Conjugate. Anal Chem. 2020;92(7):5185-5190. doi:10.1021/acs.analchem.9b05704(IF:6.785)


[3] Hu JX, Ran JB, Chen S, Jiang P, Shen XY, Tong H. Carboxylated Agarose (CA)-Silk Fibroin (SF) Dual Confluent Matrices Containing Oriented Hydroxyapatite (HA) Crystals: Biomimetic Organic/Inorganic Composites for Tibia Repair. Biomacromolecules. 2016;17(7):2437-2447. doi:10.1021/acs.biomac.6b00587(IF:5.583)


[4] Liang Y, Liu X, Zhou R, Song D, Jiang YZ, Xue W. Chaetocin Promotes Osteogenic Differentiation via Modulating Wnt/Beta-Catenin Signaling in Mesenchymal Stem Cells. Stem Cells Int. 2021;2021:8888416. Published 2021 Feb 6. doi:10.1155/2021/8888416(IF:5.443)


[5] Gao Y , Zhang C , Chang J , et al. Enzyme-instructed self-assembly of a novel histone deacetylase inhibitor with enhanced selectivity and anticancer efficiency. Biomater Sci. 2019;7(4):1477-1485. doi:10.1039/c8bm01422a(IF:5.251)


[6] Gao Y , Zhang C , Chang J , et al. Enzyme-instructed self-assembly of a novel histone deacetylase inhibitor with enhanced selectivity and anticancer efficiency. Biomater Sci. 2019;7(4):1477-1485. doi:10.1039/c8bm01422a(IF:5.251)


[7] Zhong J, Tu X, Kong Y, et al. LncRNA H19 promotes odontoblastic differentiation of human dental pulp stem cells by regulating miR-140-5p and BMP-2/FGF9. Stem Cell Res Ther. 2020;11(1):202. Published 2020 May 27. doi:10.1186/s13287-020-01698-4(IF:5.116)


[8] Li Y, Liu C, Liu W, et al. Apatite Formation Induced by Chitosan/Gelatin Hydrogel Coating Anchored on Poly(aryl ether nitrile ketone) Substrates to Promote Osteoblastic Differentiation. Macromol Biosci. 2021;21(11):e2100262. doi:10.1002/mabi.202100262(IF:4.979)


[9] Fan C, Zhan SH, Dong ZX, et al. Cross-linked gelatin microsphere-based scaffolds as a delivery vehicle of MC3T3-E1 cells: in vitro and in vivo evaluation. Mater Sci Eng C Mater Biol Appl. 2020;108:110399. doi:10.1016/j.msec.2019.110399(IF:4.959)


[10] Ran J, Jiang P, Liu S, et al. Constructing multi-component organic/inorganic composite bacterial cellulose-gelatin/hydroxyapatite double-network scaffold platform for stem cell-mediated bone tissue engineering. Mater Sci Eng C Mater Biol Appl. 2017;78:130-140. doi:10.1016/j.msec.2017.04.062(IF:4.164)


[11] Luo Y, Cao X, Chen J, Gu J, Zhao J, Sun J. MicroRNA-224 suppresses osteoblast differentiation by inhibiting SMAD4. J Cell Physiol. 2018;233(10):6929-6937. doi:10.1002/jcp.26596(IF:3.923)


[12] Liu H, Yi X, Tu S, Cheng C, Luo J. Kaempferol promotes BMSC osteogenic differentiation and improves osteoporosis by downregulating miR-10a-3p and upregulating CXCL12. Mol Cell Endocrinol. 2021;520:111074. doi:10.1016/j.mce.2020.111074(IF:3.871)


[13] Chen N, Yang H, Song L, Li H, Liu Y, Wu D. MicroRNA-409-3p promotes osteoblastic differentiation via activation of Wnt/β-catenin signaling pathway by targeting SCAI. Biosci Rep. 2021;41(1):BSR20201902. doi:10.1042/BSR20201902(IF:3.840)


[14] Tang Z, Gong Z, Sun X. LncRNA DANCR involved osteolysis after total hip arthroplasty by regulating FOXO1 expression to inhibit osteoblast differentiation. J Biomed Sci. 2018;25(1):4. Published 2018 Jan 16. doi:10.1186/s12929-018-0406-8(IF:3.466)


[15] Weng Z, Wang C, Zhang C, et al. All-Trans Retinoic Acid Promotes Osteogenic Differentiation and Bone Consolidation in a Rat Distraction Osteogenesis Model. Calcif Tissue Int. 2019;104(3):320-330. doi:10.1007/s00223-018-0501-6(IF:3.265)


[16] Cheng D, Lv H, Yao Y, et al. Roles of the Site 2 Protease Eep in Staphylococcus aureus. J Bacteriol. 2020;202(15):e00046-20. Published 2020 Jul 9. doi:10.1128/JB.00046-20(IF:3.006)


[17] Yu L, Fei Q, Lin J, Yang Y, Xu Y. The Osteogenic Effect of Local Delivery of Vancomycin and Tobramycin on Bone Marrow Stromal Cells. Infect Drug Resist. 2020;13:2083-2091. Published 2020 Jul 1. doi:10.2147/IDR.S261767(IF:2.984)


[18] Lv H, Yang H, Wang Y. Effects of miR-103 by negatively regulating SATB2 on proliferation and osteogenic differentiation of human bone marrow mesenchymal stem cells. PLoS One. 2020;15(5):e0232695. Published 2020 May 7. doi:10.1371/journal.pone.0232695(IF:2.740)


[19] Lv H, Yang H, Wang Y. Effects of miR-103 by negatively regulating SATB2 on proliferation and osteogenic differentiation of human bone marrow mesenchymal stem cells. PLoS One. 2020;15(5):e0232695. Published 2020 May 7. doi:10.1371/journal.pone.0232695(IF:2.740)


[20] Liu C, Wang J, Gao C, et al. Enhanced osteoinductivity and corrosion resistance of dopamine/gelatin/rhBMP-2-coated β-TCP/Mg-Zn orthopedic implants: An in vitro and in vivo study. PLoS One. 2020;15(1):e0228247. Published 2020 Jan 30. doi:10.1371/journal.pone.0228247(IF:2.740)


[21] Ding C, Fu S, Chen X, Chen C, Wang H, Zhong L. Epigallocatechin gallate affects the proliferation of human alveolar osteoblasts and periodontal ligament cells, as well as promoting cell differentiation by regulating PI3K/Akt signaling pathway. Odontology. 2021;109(3):729-740. doi:10.1007/s10266-021-00597-1(IF:2.634)


[22] Wang YJ, Zhang HQ, Han HL, Zou YY, Gao QL, Yang GT. Taxifolin enhances osteogenic differentiation of human bone marrow mesenchymal stem cells partially via NF-κB pathway. Biochem Biophys Res Commun. 2017;490(1):36-43. doi:10.1016/j.bbrc.2017.06.002(IF:2.466)


[23] Bin-Bin Z, Da-Wa ZX, Chao L, et al. M2 macrophagy-derived exosomal miRNA-26a-5p induces osteogenic differentiation of bone mesenchymal stem cells. J Orthop Surg Res. 2022;17(1):137. Published 2022 Mar 4. doi:10.1186/s13018-022-03029-0(IF:2.359)


[24] Huang L, Li Q. Notoginsenoside R1 promotes differentiation of human alveolar osteoblasts in inflammatory microenvironment through inhibiting NF‑κB pathway and activating Wnt/β‑catenin pathway. Mol Med Rep. 2020;22(6):4754-4762. doi:10.3892/mmr.2020.11537(IF:2.100)


[25] Wang YH, Li SY, Yuan SJ, Pan YX, Hua Y, Liu JY. MiR-375 promotes human periodontal ligament stem cells proliferation and osteogenic differentiation by targeting transducer of ERBB2, 2. Arch Oral Biol. 2020;117:104818. doi:10.1016/j.archoralbio.2020.104818(IF:1.931)

购物车
客服
电话
咨询